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Abstract
Existing recommender systems usually make recommendations by exploiting the binary relationship between users
and items, and assume that users only have flat preferences for items. They ignore the users’ intentions as an origin
and driving force for users’ performance. Cognitive science tells us that users’ preference comes from an explicit in-
tention. They first have an intention to possess a particular (type of) item(s) and then their preferences emerge when
facing multiple available options. Most of the data used in recommender systems are composed of heterogeneous
information contained in a complicated network’s structure. Learning effective representations from these hetero-
geneous information networks (HINs) can help capture the user’s intention and preferences, therefore, improving
recommendation performance. We propose a hierarchical user’s intention and preferences modeling for sequential
recommendation based on relation-aware HIN embedding (HIP-RHINE). We first construct a multirelational semantic
space of heterogeneous information networks to learn node embedding based on specific relations. We then model
user’s intention and preferences using hierarchical trees. Finally, we leverage the structured decision patterns to learn
user’s preferences and thereafter make recommendations. To demonstrate the effectiveness of our proposed model,
we also report on the conducted experiments on three real data sets. The results demonstrated that our model
achieves significant improvements in Recall and Mean Reciprocal Rank metrics compared with other baselines.

Keywords: recommender system; sequential recommendation; heterogeneous information networks; user in-
tention modeling

Introduction
One of the critical tasks in the recommender system is
to help users find the items that they are interested in
from many items, and this will improve the user expe-
rience. Traditional recommendation algorithms usu-
ally use a binary relation between the users and items
to learn users’ preferences for recommendation, such
as collaborative filtering1,2 recommending items to
users based on users or items similarity, matrix factor-
ization1,3 decomposing scoring matrix into latent feature
expression of users and items, and then recommending
items of interest to each user. However, they all have
problems such as sparse matrix, cold start, flattening
preference, and limiting the model’s performance.

There is a natural interaction process in the actual
user’s purchase behavior4: first, the user intends to
buy a specific type of item (e.g., a jacket), and then
driven by this intention, he/she selects a particular
item (jacket of a specific brand or a specific color)
based on his/her preference and availability. This pur-
chase behavior coincides with cognitive studies5,6

wherein preference only emerges one has an intention
and that intention can be fulfilled with multiple options.
The traditional recommendation algorithms use the
user–item binary interaction relationship, ignoring the
origin and the driving of the preference that is user’s in-
tention. This is because modeling user’s intention and
preference is challenging.
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The existing recommender systems contain a wealth
of different types of information, which constitutes a
heterogeneous information network (HIN).7 HINs
generally have nodes and links in the form of nodes
and links, which reflect different semantic perspectives
on user preference.8 The model in Sun et al.9 uses ma-
trix decomposition and factorization machine to learn
the feature expression of users and items in different
meta paths. It can only learn better for specific meta
paths because the model has different learning abilities
depending on the meta paths.

Chang et al.10 construct a HIN model, such as defin-
ing a network model on Yelp data set through node
types user, review, word, etc. A proposal was then to
define the semantic information association between
two nodes located on two different meta paths using
the PathSim algorithm. Prabhu et al.11 propose a
method to learn the feature representation of various
types of nodes by deep heterogeneous network embed-
ding. The model uses a convolutional neural network
and fully connected layer to learn the embedding of im-
ages and text.

However, the mentioned methods have four short-
comings:

1. When modeling user preferences using a binary
relationship between a user and an item, the as-
sumption is that the user’s preferences are flat, ig-
noring the hierarchical relationship between user
intention and preference.

2. Identifying semantic heterogeneity between vari-
ous types of nodes and relationships is difficult
when modeling them in a shared feature space.

3. Fine-grained learning of node representation
based on particular relationships does not quite
exist.

4. Distinct link relationships may correlate with dif-
ferent features of node properties.

In this article, based on relation-aware HIN embed-
ding, we propose hierarchical intention and preference
modeling for sequential recommendation. We make
the nodes that hold the relationship close to each
other and the nodes that weakly hold or do not hold
the relationship far away by projecting each relation-
ship and corresponding node in the HIN into the
relationship-specific semantic space rather than the
public space. To integrate disparate information, we
create a relation-aware attention layer that personalizes
the influence of different connections on node repre-
sentation learning.

We model hierarchical user intention and preference
based on multirelational node embedding learned in a
HIN. We adopt high-level user–category decision mak-
ing to understand user’s category intention and specific
preferences within the intention. The model ranks and
recommends items depending on their learned prefer-
ence degree that is explainable.

Our contributions mainly include the following four
aspects:

1. We apply relation-aware HIN embedding to gen-
erate distinct node embedding that has diverse re-
lationships among user–item–category.

2. We propose a relation-aware attention mecha-
nism to learn the varied effects of different rela-
tionships on the representation of distinct node
features.

3. We construct a hierarchical tree of user inten-
tion and infer the possible user intentions and
preferences.

4. We evaluate our method on three real-world
data sets, and the results demonstrate that the
proposed model outperforms the baseline
methods.

This article is organized as follows: Related Work
section reviews related studies that lead to our pro-
posed model in Methodology section; Experiments sec-
tion details experiments and discussions followed by
conclusions.

Related Work
HIN Embedding-based recommendation
As opposed to homogeneous networks, HINs have
multiple types of nodes and edges. Several attempts
with HIN embedding have yielded promising results
in various tasks.12–15 The recommender system based
on HIN successfully solves the problem of how to
model different kinds of heterogeneous auxiliary infor-
mation and user interaction behavior. It effectively al-
leviates the problem of data sparsity and cold start in
the recommendation system and can significantly im-
prove the interpretability of the recommender system.

The fundamental of a recommender system based
on a HIN is to model the user–item interaction and
all auxiliary information into the HIN, and then design
a recommendation model suitable for the HIN.16 Sem-
Rec17 takes into account the attribute values of links,
learns the weight mechanism of different meta paths,
combines these similarities, and approximates the scor-
ing matrix.
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HeteRec18 uses a meta path to calculate the item–
item similarity, then makes an inner product with a
user scoring matrix to generate a user preference diffu-
sion matrix, and uses a non-negative matrix on the dif-
fusion matrix to learn potential characteristics of users
and items. HIN2Vec13 learns HIN embeddings by per-
forming several prediction training tasks concurrently.
HERec15 filters node sequences with type restrictions,
capturing the semantics of HINs.

Sequential recommendation
In contrast to traditional recommendation approaches
such as collaborative filtering,19–21 or matrix factoriza-
tion,3,22 sequential recommendation aims to capture the
temporal shifting patterns of user preferences. The major-
ity of classical approaches are based on Markov Chains
(MCs), which explore how to extract sequential patterns
to learn users’ following preferences using probabilistic
decision-tree models.23–26 Nevertheless, MC-based ap-
proaches can only represent local sequential patterns be-
tween neighboring interactions and cannot address the
whole series. Then successive recommendation algo-
rithms based on factorization machines are applied.

For instance, Rendle et al.23 present FPMC, which
combines matrix factorization and the Markov model
to simulate individualized transition probability.
Cheng et al.27 expand FPMC to PFMC-LR and use a
Markov model to provide geographical limits to the
user’s movement range. The enormous success of
deep neural networks also has spurred the use of
deep models in sequential recommendation.25,28,29

For example, Wang et al.30 integrate auxiliary and iden-
tity information to develop e-commerce recommenda-
tions to prevent the recommender system’s cold start.
Wang et al.31 introduce HRM—hierarchical represen-
tation model, which can extract interest representa-
tions more effectively from user behavior sequences.

Recently, Recurrent Neural Networks have been de-
vised to model variable-length sequential data with the
goal of encoding previous user behaviors into latent
representations. Hidasi et al.,32 particularly, use gated
recurrent units to collect user behavior sequences for
session-based recommendations, and they subse-
quently suggest an enhanced version33 with a different
loss function. Liu et al.34 and others35,36 investigate the
challenge of sequential recommendation given contex-
tual information. Furthermore, unidirectional28 and bi-
directional29 self-attention techniques are used to
collect sequential patterns of user activities, resulting
in state-of-the-art performance.

Nevertheless, these approaches only focus on model-
ing the relationships between the target user’s prior be-
haviors and their upcoming behavior, leaving out the
capacity to capture user intents buried in the behaviors.
As a result, conventional techniques are unable to com-
prehend why the target user makes her following
action.

Intention-aware recommendation
In recent years, diverse intention-aware recommenda-
tion has drawn great attention. It takes into account
users’ intents in behavior modeling. Zhu et al.37 pro-
pose a key-array memory network (KA-MemNN)
that portrays intents directly using items’ categories
in users’ behaviors. This approach is straightforward
and provides an obvious way to define user intents.
Chen et al.38 employ an attention mechanism to cap-
ture users’ category-wise intentions, represented by a
pair of action types and item categories. Wang et al.39

propose a neural intention-driven method for model-
ing the heterogeneous intentions underlying users’
complex behaviors.

Li et al.40 present an intention-aware method to cap-
ture each user’s underlying intentions that may lead to
her following consumption behavior and improving
recommendation performance. Wang et al.41 aggregate
the history sequence into relation-specific embeddings
to model dynamic impacts of historical relational inter-
actions on user intention. In contrast, they give less at-
tention to simulating user intentions, particularly when
users’ behaviors are melting. They also disregard orga-
nized user intent transition, resulting in a solid induc-
tive bias for sequential recommendation.

Attention mechanism-based recommendation
Deep learning’s attention process31 is comparable with
humans’ selective visual attention mechanism. Its pur-
pose is to swiftly find more relevant information to the
task goal among a significant volume of information. It
is frequently used in text translation, sequence model-
ing, image recognition, video description, etc. Hidasi
et al.32 pioneered the attention mechanism for machine
translation within the encoder–decoder architecture. It
can discover the shortest path between any two points,
regardless of their distance or order. Deep Interest Net-
work (DIN)42 model calculates the correlation between
users’ previous shopping histories and potential items
using the attention mechanism.

In contrast, the DIN model does not take into ac-
count the time of user behavior and assumes that
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user behavior is independent of each other. Deep Inter-
est Evolution Network (DIEN)43 holds that user interest
is dynamic and shifts over time. A user interest extraction
layer and a user interest evolution layer are presented
based on DIN. Local activation is incorporated in each
stage of Gated Recurrent Unit to boost the representation
of relevant interests and mimic the movement of inter-
ests indicated by users in the behavior sequence.

Deep Session Interest Network (DSIN)44 argues that
the user behavior sequence has a hierarchical structure.
User behavior in a single session is similar, and user be-
havior in subsequent sessions is considerably different.
With high interpretability, the attention mechanism
may distinguish the value of user behavior and screen
out behaviors that are strongly related but irrelevant
to objectives.

As we can see from above, the drawbacks associated
with the traditional recommendation approach stimu-
late various of efforts in different directions. HIN
Embedding-based recommendation tries to overcome
problems with homogeneous networks; sequential rec-
ommendation aims to capture the temporal shifting
patterns of user preferences. Realizing the root of the
preference comes by the user’s intention, many efforts
have been conducted to capture the user’s intention.
Intention-aware recommendation simply tries to di-
rectly link user intents with behavior that ignores the
behaviors conflict and intents transitions. Recent devel-
opment on machine learning and deep learning shed
new lights on the problem, attention mechanism-
based recommendation is a brave attempt.

DIEN and DSIN are examples. However, neither ex-
plicitly represents users’ intention and preference in a
hierarchical structure. To address the issues identified,
we propose a hierarchical user intention and preference
framework for sequential recommendation based on
relation-aware HIN embedding as described in the fol-
lowing section.

Methodology
In this section, we first introduce the problem formaliza-
tion. Then we describe the proposed model framework
in detail. After that, we talk about the different modules
of our model. Finally, we discuss the model training.

Problem definition

Definition 1: Heterogeneous information network. A
HIN is defined as a graph G = V, E, R, /, uð Þ, in
which V, E, and R are the sets of nodes, edges, and

edge types, respectively. V contains the set of users U,
the set of items I, and the set of categories C.

Definition 2: Node and relation. We defined three
types of nodes in HIN as follows: user nodes u 2 U,
item nodes i 2 I, and category nodes c 2 C. Besides,
three types of relations are defined as follows: user–
item u� ið Þ, item–category i� cð Þ, and user–user
u� uð Þ. A node relation triple, u, r, i 2 P, describes

that two nodes u and v are connected by a relation
r 2 R. Here, P represents the set of all node-relation
triples.

Definition 3: HIN embedding. Given a HIN G = V,ð
E, R, /, uÞ, HIN embedding aims to develop a map-

ping function f : V! Rd that projects each node
v 2 V to a low-dimensional vector in Rd, where d! Vj j.

Model framework
The framework of our approach is shown in Figure 1. It
consists of three modules as follows:

1. Relation-aware node embedding: We generate dis-
tinct node embedding in HINs that have diverse
relationships among the user–item–category. The
user–item relationship represents the interaction
between the user and item. Meanwhile, the item–
category relationship represents which category
the item belongs to. Relation-aware node embed-
ding is to develop mapping functions that project
nodes of diverse relationships to low-dimensional
vectors.

2. Relation-aware attention layer: As the core of the
attention model, the relational attention layer can
capture the dependencies between nodes. To cap-
ture the effects of different relations on different
node embeddings, we create the user-specific rep-
resentation of categories as a sum of the node em-
beddings weighted.

3. Hierarchical user intention and preference for se-
quential recommendation: We construct a hierar-
chical tree of user intention and infer the possible
user intentions and preferences the next time. We
extract information about user intent from the re-
lational attention layer and represent their hierar-
chical structure from fine to coarse. The users’
intentions are learned to anticipate the interac-
tions between users and items. We elaborate on
the details of the three modules in the following
subsections.
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Relation-aware node embedding
The observable node V is embedded through the em-
bedding layer Wv 2 Rd · Vj j to obtain low-dimensional
embedding v 2 Rd. For observable triples u, r, i 2 P, it
represents that there is an edge r connecting between
node u and node i, and edge r can also be called relation.
We project it into the corresponding relation r semantic
space. In the relation r semantic space, node u and node
i are represented as ur = uMr 2 Rdr , ir = iMr 2 Rdr after
matrix Mr 2 Rd · dr mapping, where dr represents the
embedding dimension in relation r semantic space.

The correlation of two nodes is measured by Eucli-
dean distance. Euclidean distance satisfies the triangu-
lar inequality, naturally maintaining the first-order and
second-order correlation. This specific relation projec-
tion can keep the related nodes closely connected with
each other or keep the unconnected nodes away.
The distance between node u and node i in relation
r space is:

dist u, i, rð Þ = jurþ r� irj jj22, (1)

where r = rWr 2 Rdr represents the embedding vector
of relation r, and r 2 R Rj j is on-hot vector of relation
r. Wr 2 Rdr · Rj j is the learnable parameter in the
model. If dist u, i, rð Þ is small, the relation r between
node u and node i is strong. On the contrary, the rela-
tion r between node u and node i is weak or there is no
relation r.

Relation-aware attention layer
Different relations have different semantic informa-
tion. That is, they represent different aspects of
nodes. This section wants to capture the effects of dif-
ferent relations on different node embeddings. We pro-
pose a relation-aware attention layer to learn to assign
different attention weights to capture the relationships
among the nodes. We input node embedding v 2 V

into the attention layer, one layer can be formulated
as follows:

h =
XR

r

xrv
r, xr =

exp qTr Wavrþ bað Þð Þ
PR

k exp qTr Wavkþ bað Þð Þ
, (2)

where xr represents the attention weight of relation r
embedded in nodes v 2 V , and Wa 2 Rd · dr , q 2 Rd ,
and ba 2 Rd are learnable parameters in the model.
Finally, we get the final feature representation h of
node v, which combines node embedding v 2 V
based on multirelation semantics. Specifically, user
type node u, item type node i, and category type
node c correspond to hu, hi, and hc, respectively.

Hierarchical user intention and preference
for sequential recommendation
Inspired by Prabhu et al.11 and Zhu et al.,45 we build a
hierarchical tree according to the characteristic that the
category–item relation has a hierarchical index in the
recommender system. The retrieval process of each

FIG. 1. Model framework.
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hierarchy is called hierarchical user intention and pref-
erence. To facilitate construction, at each hierarchy of
nonleaf nodes in the tree, we first randomly sort the
category information and place the items together
that belong to the same category. If an item belongs
to multiple categories, it will be randomly assigned to
one of them.

Then we use the learned node embedding vector to
recluster into a new tree. The nonleaf node is a coarse-
grained category concept used as the index of items in
the tree. The leaf node is the items in the corpus, which
finely represents users’ specific preferences under their
intention. We predict the user’s category intention and
preference as follows:

suc = r hT
u Hc

� �
, (3)

where Hc = hcx½ �
Cj j

x = 12 Rd · Cj j is category feature repre-
sentation, and suc can also be written as suc =
sucx½ � Cj j

x = 1. Here, the value of sucx reflects the user u’s
preference for category cx, and r is sigmoid activation
function.

We take the items i1, i2, i3, : :: iNf g that are the first K
categories according to users’ interest as the candidate
set. The feature of this candidate set is represented as
Hi = hix½ �

N
x = 12 Rd · N , and then the user’s preference

for these candidate items is calculated based on user’s
category intention as follows:

sui = softmax hT
u Hi

� �
, (4)

where softmax() is a normalization function. sui =
suix½ �Nx = 1, where suix represents the probability that

user u likes item ix. We rank the probabilities in sui

and recommend the top k items to user u.

Model training
We use Bayesian personalized ranking objective46 to
optimize our model. The key idea of Bayesian person-
alized ranking optimization is to make the items that
users are really interested in ranking ahead of the
items that users are not interested, that is, the positive
sample probability is greater than the negative sample
probability. So, we take a negative sample ix¢ for each
positive sample u, ixð Þ 2 Dþtrain. When optimizing
node embedding in a relation semantic space, for the
observable triple u, r, i 2 PnDþtest , we take a negative
sample i¢, indicating no relation r between i¢ and u.
We hope that u is closer to positive sample i and farther
away from negative sample i¢. Our optimization
objectives are:

L= argmin�
X

u, ixð Þ2Dþtrain, ix¢

ln r suix � suix¢

� �
�

X

u, r, i2PnDþtest , i¢

ln r juMr þ r� iMrj jj22� juMr þ r� i¢Mrj jj22
� �

þ k1 jW�j jj22þ k2q2
2þ k3

X
jMrj jj

r2R

22,

(5)

where k1, k2, and k3 are the regularization parameters.
We use the Adam method47 to optimize our model.
W� = Wv, Wr, Waf g and q are learnable parameters in
our model.

Experiments
We provide empirical results to demonstrate the effec-
tiveness of our proposed model. The experiments are
designed to answer the following research questions:

RQ1: How does our proposed model perform com-
pared with other state-of-the-art sequential rec-
ommendation models and user intention
modeling-based methods?

RQ2: How does each module (i.e., multirelation HIN
embedding, relation-aware attention layer, and
hierarchical user intention) affect the perfor-
mance of our model?

RQ3: How do the influences of different parameters
affect our proposed model?

Experiments settings
To answer the first research question (RQ1), we use
three actual and available data sets and make compar-
isons with existing models on Recall and Mean Recip-
rocal Rank (MRR).

Data sets. To evaluate our proposed model, we con-
ducted extensive experiments on the three real data
sets. The statistics of the data sets are summarized in
Table 1.

MovieLens. This data set is about movie ratings and
has been widely used to evaluate recommendation algo-
rithms. We use MovieLens-1 m containing 1 million
rating records, respectively. We extract interaction re-
cords from rating data, items from ‘‘movie name,’’
and users from ‘‘user id.’’

Douban-Book. This data set is about book ratings col-
lected from Douban website. We use friend relation-
ship, rating data, and genres of books in the data set
as category. It is worth noting that although our
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model only illustrates three types of nodes, our model
can be extended to more types of nodes and correspond
more types of relationships.

Last-FM. This data set is about music that users listen
to on the online music website Last.fm. The data set
includes friend relationship, user listening to artist,
user label to artist, and artist label. To unify category
nodes, we take the artist’s label as category.

Evaluation metrics. To evaluate the recommendation
performance of our proposed model, we use two eval-
uation metrics Recall@K and MRR@K for short. The
first metric evaluates the fraction of ground truth
items that are retrieved over the total amount of
ground truth items, whereas the second metric is the
mean of reciprocal of the rank at which the ground-
truth item is retrieved. The larger the values of both
Recall and MRR metrics, the better the performance.

Recall@K =
1

Dþtestj j
X

u, ix , rð Þ2Dþtest

I pu, x6kð Þ, (6)

MRR@K =
1

Dþtestj j
X

u, ix , rð Þ2Dþtest

1
Ru, x

I pu, x6kð Þ, (7)

where pu, x represents the ranking of the positive sam-
ple ix among the top k items recommendation for user
u. I �ð Þ indicates that if the positive sample ix is in the
top k items, it returns 1; otherwise it returns 0. Dþtest
is the test set.

Baselines. We compare our model with the following
baseline algorithms, including HIN embedding meth-
ods, session-based recommendation, and hierarchical
representation approaches.

Deep heterogeneous autoencoders. This article proposes
a deep heterogeneous self-encoder to model heteroge-
neous auxiliary information to solve the data sparsity
problem of the collaborative filtering algorithm.48 We
set the number of hidden layers of deep heterogeneous
autoencoders (DHA) self-encoder L = 4. We also sort
the input data of DHA according to the data format re-

quirements in this article. The input data include user,
item, category, and interaction.

BPR-MF + TransE. This method combines BPR-MF
and TransE. BPR-MF combines Bayesian personalized
ranking with matrix factorization model and learns
personalized ranking from implicit feedback.49 TransE
models the node embedding of HIN. Because we do not
use image data, we remove the image (visual knowl-
edge) processing module in BPR-MF + TransE.

FPMC. This method models user preferences by com-
bining MF, which captures users’ general preferences
and a first-order MC to predict the user’s next action.23

PageRank with Priors. This method integrates the
user–item relationship and other heterogeneous auxil-
iary information into a unified isomorphism diagram.50

PageRank outputs a personalized initial probability dis-
tribution. Similarly, we remove the image (visual knowl-
edge) processing module in PageRank with Priors
(PRP).

FOSSIL. This method integrates factored item simi-
larity with MC to model a user’s long- and short-
term preferences.26 We set lu and l as single scalar
since the length of each session is variable.

Hierarchical representation model. This method gener-
ates a hierarchical user representation to capture se-
quential information and general tastes.31 We use
max pooling as the aggregation operation because
this achieves the best result.

SHAN. This model employs two attention networks
to mine users’ long- and short-term preferences.51

Key-array memory network. This article proposes a
KA-MemNN to hierarchize user intention preference
for sequence recommendation based on the ternary re-
lationship of user–intention–item.37

Parameter settings. To facilitate the experiments, we
filter out users and items for which interactive data

Table 1. Statistics of the data sets

Data set No. of users No. of items No. of interactions (m) No. of genres Average genres/item Density (%)

MovieLens 6040 3416 1.0 18 144.4 4.79
Douban-Book 129,490 58,541 16.8 381 3.1 0.63
Last-FM 23,566 48,123 3.0 1946 8.7 0.08
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are <5. For each user, we randomly select 80% of the in-
teractive data as the training set Dþtrain and the remaining
20% of the interactive data as the test set Dþtest . In the
training set, we randomly selected 20% of the interac-
tive data as the development set Dþvalid to adjust our
model parameters and comparison methods. In addi-
tion, models are tuned for best performance through
tuning of parameters, such as learning rate a 2 0:1,f
0:01, 0:001, 0:0001g, regularization parameters k� 2

0:1, 0:01, 0:001, 0:0001f g, Dropout 2 0:2, 0:4, 0:5f g,
and dimensionality d = dr 2 60, 80, 100, 120, 140,f
150g.

Performance comparison
We begin with the comparison with respect to
Recall@20, Recall@50, MRR@20, and MRR@50.
Table 2 gives the empirical results, with percent Imp.
denoting the relative improvements of the top per-
forming technique (bold) over the strongest baselines
(underlined). We find the following:

1. Our model consistently outperforms all baselines
across the three data sets in terms of all measures.
More specifically, it achieves significant improve-
ments over the strongest baselines with respect to
MRR@20 by 7.25%, 25.7%, and 15.87% in Movie-
Lens, Douban-Book, and Last-FM, respectively.
Our model’s logic and efficacy are demonstrated
in this way. These gains can be attributed to our
model’s relational modeling: (1) By investigating
user intentions, we can better define the links be-
tween users and objects, resulting in more effec-
tive user and item representations. Some
baselines, in contrast, ignore hidden user intents;
(2) our model learns node embeddings in HINs

based on user–intention–item relationships; (3)
our model fuses node feature representations in
multirelational semantic spaces using relation-
aware attentional layers.

2. We can see that the sequential methods (e.g.,
FPMC, HRM, and KA-MemNN) outperform the
nonsequential methods (e.g., BPR-MF, PRP, and
FOSSIL) in general. The methods that only con-
sider user actions without the sequential order
do not make full use of the sequence information
and report the worse performance. Specifically,
compared with BPR-MF, the main advantage of
FPMC comes from modeling historical user ac-
tions with first-order Markov chains, namely con-
sidering the sequence order, so that FPMC reports
better results than BPR-MF. This can verify that
sequential pattern is essential for improving the
predictive ability for sequential recommendations.

3. BPRMF + TransE and PRP outperform DHA, in-
dicating that HIN embedding can more reasonably
capture heterogeneous information semantic fea-
tures to improve recommendation quality rather
than directly encoding structural information in
a feature engineering manner. KA-MemNN out-
performs both BPR-MF + TransE and FPMC on
all the data sets, indicating that hierarchical user
intent and preference are better than flat user pref-
erence of the learning approach. Compared with
BPRMF + TransE and KA-MemNN, we model
the heterogeneity of relationships in HINs based
on specific relation semantics and personalize the
fusion of node feature representations in each se-
mantic space, and in addition, we model hierarchi-
cal user intentions and preferences according to
the natural user interaction process.

Table 2. Overall performance comparison

Data set Metric DHA BPR-MF + TransE FPMC PRP FOSSIL HRM SHAN KA-MemNN Ours %Imp

MovieLens Recall@20 0.2712 0.3360 0.3389 0.3207 0.3159 0.3486 0.3421 0.3537 0.3715 5.03
Recall@50 0.3423 0.4151 0.4168 0.4321 0.4098 0.4250 0.4278 0.4324 0.4578 5.87
MRR@20 0.0628 0.2006 0.3021 0.1359 0.2891 0.3467 0.3097 0.3628 0.3891 7.25
MRR@50 0.0677 0.2071 0.3110 0.1411 0.2928 0.3540 0.3203 0.3702 0.3956 6.86

Douban-Book Recall@20 0.1298 0.1332 0.1487 0.1362 0.1442 0.1503 0.1220 0.1498 0.1687 12.24
Recall@50 0.1726 0.1815 0.1930 0.1853 0.1902 0.1977 0.1703 0.2011 0.2203 9.55
MRR@20 0.0352 0.0806 0.0851 0.0798 0.0814 0.0946 0.1033 0.1222 0.1536 25.70
MRR@50 0.0407 0.0911 0.0934 0.0862 0.0892 0.1035 0.1092 0.1301 0.1610 23.75

Last-FM Recall@20 0.0733 0.0812 0.0880 0.0863 0.0774 0.0902 0.0821 0.0743 0.1005 11.42
Recall@50 0.1201 0.1334 0.1405 0.1391 0.1206 0.1439 0.1317 0.1258 0.1542 7.16
MRR@20 0.0301 0.0330 0.0329 0.0305 0.0310 0.0334 0.0317 0.0309 0.0387 15.87
MRR@50 0.0324 0.0357 0.0351 0.0343 0.0337 0.0365 0.0350 0.0349 0.0425 16.44

The top performing technique (bold), the strongest baselines (underlined).
%Imp, denoting the relative improvements of the top performing technique over the strongest baselines; DHA, deep heterogeneous autoencoders;

HRM, hierarchical representation model; KA-MemNN, key-array memory network; PRP, PageRank with Priors.
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4. As the data show, there is a discrepancy in perfor-
mance between HRM and KA-MemNN. The dis-
parity, we believe, is caused by the various degrees
of user intentions. When compared with single-
level user intentions, two-level intents may be
thought of as an extension that separates user in-
tents into particular and broad categories.

Impact of components
In this section, we drill deeper to answer question RQ2
the impact of each component in our proposed model,
which is in relation with the overall performance based
on embedding the public feature space. We also want to
verify that our hierarchical user intent and preferences
outperform flat user preferences on recommendation.
We adopt three simplified versions of HIP-RHINE as
follows.

HIP-RHINE-1: Remove the relation-aware hetero-
geneous information embedding module, and the
replacement operation is to integrate heteroge-
neous relations and structured data into a unified
isomorphic graph.

HIP-RHINE-2: Remove the relation-aware attention
layer module, and the replacement operation is to
directly add the feature expressions of nodes in
each relation semantic embedding space point by
point.

HIP-RHINE-3: Remove the hierarchical tree mod-
ule, and the replacement operation is to directly
calculate sux for the whole set of items and rec-
ommend by ranking.

We also apply Recall@N and MRR@N to evaluate
the performance of these models. We show the results
under the metrics of Recall@20, Recall@50, MRR@20,
and MRR@50. In addition, we evaluate the score of
each category as an average of the scores of its items.
This way the intention-based MRR can also reflect
the performance of item recommendations.

The results in Table 3 show that our method per-
forms well on all the data sets compared with HIP-
RHINE-1 because we consider the heterogeneity of
relations for node embedding. Besides, our method
performs well on all the data sets compared with
HIP-RHINE-2 because our method captures the degree
of influence of different relations on the final node em-
bedding. The experiments demonstrate the effective-
ness of our multirelational semantic embedding and
relation-aware attention layer. Compared with HIP-
RHINE-3, our method performs well on all data sets
because our method hierarchizes user intents and pre-
dicts user preferences for items based on specific in-
tents. The experiments show the effectiveness of
hierarchical user intents and preferences.

Parameter analysis
After analyses on individual components in relation to
the model’s performance, we realize that the model’s
performance is also affected by the model’s parameters.

To further investigate the influences of different pa-
rameters in our model, we calculate the values of
Recall@20, Recall@50, MRR@20, and MRR@20 for
HIP-RHINE across different numbers of dimensions
with size d, and also explore the sensitivity of the
parameter—the number of negative samples.

As shown in Figure 2a–d, the model’s performance
gradually improves as dimension d increases. However,
the model performance decreases a little on the Last-
FM data set when d > 120 and finally stabilizes.
This trend indicates that the model can capture more
complex feature embeddings as d increases. However,
overincreasing d may lead to overfitting problems
resulting in a degradation of model performance.

Furthermore, we study the effect of the sampling num-
ber k on the overall performance. Because the item sizes
differ across the three data sets, we experiment with var-
ious k ranges. Specifically, we try k 2 10, 20, 30, 40,f
50, 60g on MovieLens, k 2 10, 100, 200, 300, 400,f

Table 3. Performance evaluation of variant models

Model

MovieLens Douban-Book Last-FM

R@20 R@50 M@20 M@50 R@20 R@50 M@20 M@50 R@20 R@50 M@20 M@50

HIP-RHINE-1 0.2917 0.3702 0.3058 0.3105 0.1088 0.1596 0.0862 0.0958 0.0802 0.1319 0.0191 0.0228
HIP-RHINE-2 0.3306 0.4099 0.3522 0.3567 0.1246 0.1802 0.1050 0.1133 0.0831 0.1344 0.0243 0.0310
HIP-RHINE-3 0.3158 0.3890 0.2714 0.2790 0.1412 0.1907 0.1164 0.1221 0.0932 0.1468 0.0284 0.0336
HIP-RHINE 0.3715 0.4578 0.3891 0.3956 0.1687 0.2203 0.1536 0.1610 0.1005 0.1542 0.0387 0.0425

The complete HIP-RHINE is the top performing (bold).
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500g on Douban-Book, and k 2 10, 50, 100, 150,f
200, 250g on Last-FM, respectively. Here we only
show the results on one dimension over each data set
due to space limitation. As shown in Figure 3a–c, as
the number of negative examples increases, the perfor-
mance of our model first also grows. The trending is
quite similar across all three data sets.

The performance gain between two successive trials,
in contrast, diminishes as the sampling number k
grows. It suggests that if we continue to sample more
negative samples, we will see less performance progress
but more computational complexity.

Case study
To investigate whether our proposed model is effective
and explainable, we chose one user at random from

Douban-Book and visualize the hierarchical tree of
user intention and preference.37,52 We extract attention
between a single category and the observed objects that
correspond to that category for each user.

As shown in Figure 4, there are three types of nodes.
A category node is a broad term that encompasses a
wide range of concepts. A concept is a collection of items
that share some common attributes. Concepts, as opposed
to coarse-grained categories and fine-grained entities, can
assist in better representing users’ interests at a semantic
granularity that is appropriate. An entity is a unique item
that belongs to one or more concepts. There are three
sorts of edges between nodes as well. The IsA relationship
denotes that the destination node is a child of the source
node. The involved relationship indicates that the destina-
tion node is involved in a source node-described item.

FIG. 2. (a–d) Performance in terms of Recall@20, Recall@50, MRR@20, and MRR@50 with respect to
#Dimension d over three data sets. MRR, Mean Reciprocal Rank.
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FIG. 3. (a–c) Performance in terms of Recall@20, Recall@50, MRR@20, and MRR@50 with respect to #Negative
samples k over three data sets. The number of negative samples is increased from 10 to 60 on MovieLens, 10 to
500 on Douban-Book, and 10 to 250 on Last-FM.

FIG. 4. An example to show the hierarchical tree of user intention and preference given by our approach.
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The color scale of entity nodes (items) shows the
value of the attention weights, with darker signifying
a more considerable weight and lighter representing a
lower weight, as illustrated in Figure 4. When generat-
ing category embeddings, we can see that the frequently
visited objects are generally given a higher weight. This
phenomenon might be explained because category-
specific users’ preferences are reflected in the most fre-
quently viewed items in that category.

Conclusions
In this article, we propose a model for sequential rec-
ommendation based on hierarchical intentions and
preferences with relation-aware HIN embedding,
which can learn node representation in the HIN at a
fine-grained level based on the particular relation-
ships. To customize the merging of heterogeneous in-
formation, we adopt a relation-aware attention layer.
Furthermore, we employ hierarchical trees to repre-
sent user intents and preferences hierarchically, and
we use structured choice patterns of users for user
preference learning to improve recommendation
performance.

Extensive experiments on three real data sets are car-
ried out to evaluate the performance of our proposed
approach. In terms of Recall and MRR metrics, the
findings show that our model outperforms state-of-
the-art approaches by a significant margin. In the fu-
ture, we will investigate multiple and variable intents
or knowledge graph information combined with user
intention modeling.
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